Telomere capping in non-dividing yeast cells requires Yku and Rap1
نویسندگان
چکیده
منابع مشابه
Telomere capping in non-dividing yeast cells requires Yku and Rap1.
The assembly of a protective cap onto the telomeres of eukaryotic chromosomes suppresses genomic instability through inhibition of DNA repair activities that normally process accidental DNA breaks. We show here that the essential Cdc13-Stn1-Ten1 complex is entirely dispensable for telomere protection in non-dividing cells. However, Yku and Rap1 become crucially important for this function in th...
متن کاملDNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation.
Eukaryotic cells distinguish their chromosome ends from accidental DNA double-strand breaks by packaging them in a protective structure referred to as the telomere "cap." Here we investigate the nature of the telomere cap by examining events at DNA breaks generated adjacent to either natural telomeric sequences (TG repeats) or arrays of Rap1-binding sites that vary in length. Although DNA break...
متن کاملShelterin-Like Proteins and Yku Inhibit Nucleolytic Processing of Saccharomyces cerevisiae Telomeres
Eukaryotic cells distinguish their chromosome ends from accidental DNA double-strand breaks (DSBs) by packaging them into protective structures called telomeres that prevent DNA repair/recombination activities. Here we investigate the role of key telomeric proteins in protecting budding yeast telomeres from degradation. We show that the Saccharomyces cerevisiae shelterin-like proteins Rif1, Rif...
متن کاملLive Imaging of Telomeres yKu and Sir Proteins Define Redundant Telomere-Anchoring Pathways in Yeast
BACKGROUND The positioning of chromosomal domains within interphase nuclei is thought to facilitate transcriptional repression in yeast. Although this is particularly well characterized for telomeres, the molecular basis of their specific subnuclear organization is poorly understood. The use of live fluorescence imaging overcomes limitations of in situ staining on fixed cells and permits the an...
متن کاملKu Binding on Telomeres Occurs at Sites Distal from the Physical Chromosome Ends
The Ku complex binds non-specifically to DNA breaks and ensures repair via NHEJ. However, Ku is also known to bind directly to telomeric DNA ends and its presence there is associated with telomere capping, but avoiding NHEJ. How the complex discriminates between a DNA break and a telomeric extremity remains unknown. Our results using a tagged Ku complex, or a chromosome end capturing method, in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The EMBO Journal
سال: 2010
ISSN: 0261-4189,1460-2075
DOI: 10.1038/emboj.2010.155